
Profiler internals (rough draft)

Nick Smallbone

November 11, 2005

Contents

1 Introduction 2

2 The scanner 2

2.1 Collecting objects . 2
2.2 Constructing wrapper types 5

2.2.1 Built-in wrapper types 7
2.2.2 CPython-specific wrapper types 7
2.2.3 Other CPython-specific code 8

3 Possible extensions 8

3.1 Virtual objects . 8
3.2 Overlapping objects . 9

1

1 Introduction

This document shows how the profiler works internally, a little bit. The
details of it aren’t going to be correct forever: the design is still changing
quite quickly.

2 The scanner

The scanner’s job is to start from a set of roots, find as many objects as it
can reach from those, and collect as much information as it can about each
object into a wrapper.

It’s the only part of the profiler that should poke objects directly—
everything else should just look at the wrappers. So it’s important that
each wrapper contains enough information.

2.1 Collecting objects

The best way to show how the scanner works is probably through an example.
We’ll look at what the scanner does when asked to scan ls, where ls is
defined as:

ls = [1,2]

ls.append(ls)

The references from ls look like:

ls = [1, 2, ls]

1 2

The scanner will be started by a call to scanner.Objects(ls), which
will call scanner.scan(ls).

It keeps a queue of objects waiting to be scanned, and a dictionary which
stores wrappers for already-scanned objects (it maps from id(object) to a
wrapper).

2

To begin with, the dictionary will be empty and the queue will only
contain ls.

The scanner will take ls off the queue, and find a class which can be used
to count it. The next section talks about how it finds that class.

Then it makes an instance of that class, passing ls to the constructor.
That will result in a wrapper, which it enters in the wrappers dictionary:

wrappers id(ls)

wrapper(ls)

ls

1 2

The wrapper contains a field children, which is a list of child objects
referenced by the parent object. The solid arrows represent these here. The
dotted arrows are references between the original objects. The dashed arrows
are between a wrapper and its object.

Note: A lot of important details of the wrapper have been left out—
only what matters to the scanner is left. See the HappyDoc-documentation
for details of what’s there.

Now the scanner will add all of the object’s children—1, 2 and ls—to
the queue. It will then take 1 from the queue, and again will find a wrapper
class, use that to make a new wrapper and add that wrapper to the wrappers
dictionary.

It will do the same with 2. Since 1 and 2 have no child references, nothing
will be added to the queue.

3

Then it will take ls off the queue1 and see that it’s already been counted
(since id(ls) is in the dictionary).

So the queue will become empty, and now the scanner will have built a
dictionary of wrappers:

wrappers id(1) id(ls) id(2)

wrapper(ls)

wrapper(1)

wrapper(2)

ls

1 2

Here, wrapper(ls) contains references to 1, 2 and ls directly.
The final step is to change these references to point at the wrappers rather

than the objects. The scanner does this by calling the liftrefs method of
each wrapper, which changes the references itself. This will result in:

1It was added along with 1 and 2.

4

wrappers id(1) id(ls) id(2)

wrapper(ls)

wrapper(1) wrapper(2)ls

1 2

In this way the scanner has found all objects that can be reached from
ls and constructed a set of wrappers that “mirrors” the set of objects.

2.2 Constructing wrapper types

This section describes how the scanner finds a wrapper class for each object.
All necessary information is contained in the sizes module. There are

four dictionaries which map from id(something) to wrapper class.
Here are the first three. If the id of the object, or type of the object, as

appropriate, is found in one of these, the wrapper class associated with it is
used without looking further. They are tried in this order:

• sizes.object—maps from object id to wrapper class.

This is useful when some single objects need to be treated specially.

• sizes.wholetype—maps from type id to wrapper class.

Subclasses of the type do not match this - only the exact type given.
This dictionary is normally not filled manually, but by the scanner as
it finds new types, using sizes.type (see below).

5

• sizes.instance—maps from type id to wrapper class. Each entry
matches any (non-proper) subclass of the type id.

This can be used to tag objects specially by deriving them from some
class. For example, any object deriving from wrapper.ignored is given
a size of 0 and no children by an entry in here.

If any of those three match, the wrapper class is found very quickly. But
complex objects are possible, through inheritance. Every possible compound
type can’t be kept, so instead the scanner generates new wrapper classes
from the entries in sizes.type.

Each entry is a wrapper class for a single type, excluding its base classes.
The scanner, when given an object of an unknown type, will find its MRO2,
look up each class found there in sizes.type to get a list of wrapper classes,
and make a new wrapper class which inherits from all those it found.

It will then put the new wrapper class in sizes.wholetype, so that it
won’t have to be generated again for this type.

For example (this is not a valid class, but never mind),

class ListDict(list, dict):

pass

would, if it was valid, have a MRO of (list, dict, object). The scanner will
find

sizes.type[id(list)] == ListObject

sizes.type[id(dict)] == DictObject

sizes.type[id(object)] == GCObject

and will construct a compound wrapper class:

class ListDictObject(ListObject, DictObject, GCObject):

pass

sizes.wholetype[ListDict] = ListDictObject

and instantiate ListDictObject to get a wrapper for a ListDict instance.
There’s one other complication: entries in the dictionaries don’t have to

be ids. They can also be direct object or type references (where these are
hashable) or, in the case of types, the name of the type (useful where it’s hard
to find an instance of the type or the type itself to put into the dictionary).

2Method resolution order—a list of all superclasses.

6

For example, DictObject could be entered into sizes.type[id(dict)],
sizes.type[dict] or sizes.type["__builtin__.dict"]. When the scan-
ner encounters it there it will turn it into the id form anyway.

2.2.1 Built-in wrapper types

These classes are defined in wrapper.py, and aren’t specific (hopefully) to
any particular implementation of Python:

• ObjectWrapper—this is the base class for all wrappers. It defines vari-
ous functions which are used by the scanner, for example liftrefs. It
defines enough that most subclasses only need to override the __init__
function (to add type-specific code).

• ZeroObject—this is just ObjectWrapper in disguise. When given an
object it will give it a size of 0 and no children.

2.2.2 CPython-specific wrapper types

These classes are defined in cpython/rules.py and cpython/crules.pyx,
and are CPython-specific.

• BaseObject—this used to do something interesting, but now is yet
another alias for ObjectWrapper. . .

• SimpleObject—using str on an instance of this class will print out the
wrapped object (whereas ObjectWrapper will only mention the type).

• GCObject—instances of this class will ask the garbage collector what
references the parent object has to find children. object’s entry in
sizes.type uses this, so any type that doesn’t go out of its way to do
otherwise will use this.

• SimpleGCObject—a descendant of SimpleObject and GCObject.

• Object—counts any instance of object. It uses the object’s type’s
__basicsize__ as the size of the object.

• ListObject, TupleObject, StringObject, UnicodeObject,
DictObject, SetObject, FrameObject, SliceObject,
InstanceObject, ModuleObject, DictIterObject, LongObject,
CodeObject, FileWrapper—wrapper classes for various types.

7

There is also an extension module, utils.c, which contains a few func-
tions used by the wrapper classes.

2.2.3 Other CPython-specific code

cpython/rules.py contains a couple of other CPython-specific functions
that are used by the rest of the profiler:

• getname(t)—given a type object, produce a vaguely sensible name for
it. The scanner uses it to allow entering type names instead of types
into the various sizes dictionaries.

• roots()—returns a list of objects which should be used as roots if
none are specified in the call to scan. A sensible thing to use for this
is sys._getframe().

The function must return roots only and not all objects! In other
words, it should return a few objects from which everything else can
be reached in a top-down way. This is so that the scanner can ignore
wrappers - it will go no further if it encounters a wrapper object, but
if roots() returns parts of a wrapper, the scanner will have no way of
knowing and will count them anyway. And it’s not very useful to be
told that all the memory is being used by wrappers :-)

So gc.get_objects() is not a suitable implementation of roots().

3 Possible extensions

These aren’t thought out very well yet—they’re just ideas.

3.1 Virtual objects

The scanner only counts real Python objects—in CPython, ones which are
represented by a PyObject *. . . . It might be useful to be able to represent
things like shared libraries as well.3

These could be represented by wrappers which didn’t refer to a real object,
but instead to some dummy object just used to give the wrapper something

to refer to.

3Although perhaps not, since data from a program image normally uses copy-on-write.

8

In fact this can be done without changing the scanner, like so:

• Define a VirtualObject class which carries around with it size and
reference information.

• Define a VirtualWrapper class which, when it is instantiated with a
VirtualObject, just asks the VirtualObject for its size and refer-
ences.

• Set sizes.instance[VirtualObject] = VirtualWrapper.

Then code which wants to reference a non-Python object can just give
a VirtualObject instance as one of its children. The scanner will see the
entry in sizes.instance and instantiate a VirtualWrapper on the object,
and everything will just work :-).

Well, not quite. If the object is a shared library, it will contain definitions
of other Python objects, so parts will be counted twice. This problem appears
again below.

3.2 Overlapping objects

Some of the Python objects counted are tiny and it seems pedantic to count
them separately.

For example, you might expect a wrapper for a module to contain refer-
ences to everything defined at the top level of the module. Instead, it just
contains a reference to the module’s dictionary—and the dictionary contains
the references to objects.

It would be nice to collapse the module and its dictionary into a single
wrapper. But that can’t be done yet, because there might be direct references
to the dictionary.

I’m not sure how to fix that. Perhaps having views, or something like
that, would help. . . in any case, a good solution to this would also fix the
problem with virtual objects above, since a raw C object containing a Python
object somewhere could be represented as a virtual object overlapping with
a Python object.

9

